NR 440.705(5)(b)6.6. For purposes of complying with the 98 weight percent reduction in sub. (3) (a), if the vent stream entering a boiler or process heater with a design capacity less than 44 MW (150 million Btu/hour) is introduced with the combustion air or as secondary fuel, the weight percent reduction of TOC, minus methane and ethane, across the combustion device shall be determined by comparing the TOC, minus methane and ethane, in all combusted vent streams, primary fuels and secondary fuels with the TOC, minus methane and ethane, exiting the combustion device.
NR 440.705(5)(c)(c) When a flare is used to seek to comply with sub. (3) (b), the flare shall comply with the requirements of s. NR 440.18.
NR 440.705(5)(d)(d) The following test methods in Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, except as provided under s. NR 440.08 (2), shall be used for determining the net heating value of the gas combusted to determine compliance under sub. (3) (b) and for determining the process vent stream TRE index value to determine compliance under subs. (1) (c) 2. and (3) (c).
NR 440.705(5)(d)1.a.a. Method 1 or 1A, as appropriate, for selection of the sampling site. The sampling site for the vent stream flow rate and molar composition determination prescribed in subds. 2. and 3. shall be, except for the situations outlined in subd. 1. b., prior to the inlet of any control device, prior to any postreactor dilution of the stream with air and prior to any postreactor introduction of halogenated compounds into the process vent stream. No traverse site selection method is needed for vents smaller than 4 inches in diameter.
NR 440.705(5)(d)1.b.b. If any gas stream other than the reactor vent stream is normally conducted through the final recovery device:
1) The sampling site for vent stream flow rate and molar composition shall be prior to the final recovery device and prior to the point at which any nonreactor stream or stream from a nonaffected reactor process is introduced.
2) The efficiency of the final recovery device is determined by measuring the TOC concentration using Method 18 at the inlet to the final recovery device after the introduction of any vent stream and at the outlet of the final recovery device.
3) This efficiency of the final recovery device shall be applied to the TOC concentration measured prior to the final recovery device and prior to the introduction of any nonreactor stream or stream from a nonaffected reactor process to determine the concentration of TOC in the reactor process vent stream from the final recovery device. This concentration of TOC is then used to perform the calculations outlined in subds. 4. and 5.
NR 440.705(5)(d)2.2. The molar composition of the process vent stream shall be determined as follows:
NR 440.705(5)(d)2.a.a. Method 18 to measure the concentration of TOC including those containing halogens.
NR 440.705(5)(d)2.b.b. ASTM D1946-90 (reapproved 1994), incorporated by reference in s. NR 440.17 (2) (a) 24., to measure the concentration of carbon monoxide and hydrogen.
NR 440.705(5)(d)2.c.c. Method 4 to measure the content of water vapor.
NR 440.705(5)(d)3.3. The volumetric flow rate shall be determined using Method 2, 2A, 2C or 2D as appropriate.
NR 440.705(5)(d)4.4. The net heating value of the vent stream shall be calculated using the following equation:
where:
HT is the net heating value of the sample, MJ/scm, where the net enthalpy per mole of vent stream is based on combustion at 25°C and 760 mm Hg but the standard temperature for determining the volume corresponding to one mole is 20°C as in the definition of Qs (vent stream flow rate)
K1 is a constant, 1.740 × 10-7 (l/ppm) (g-mole/scm) (MJ/kcal), where standard temperature for (g-mole/scm) is 20°C
Cj is the concentration on a dry basis of compound “j” in ppm as measured for organics by Method 18 and measured for hydrogen and carbon monoxide by ASTM D1946-90 (reapproved 1994), incorporated by reference in s. NR 440.17 (2) (a) 24., as indicated in subd. 2.
Hj is the net heat of combustion of compound “j“, kcal/g-mole, based on combustion at 25°C and 760 mm Hg. The heats of combustion of vent stream components would be required to be determined using ASTM D2382-88 or D4809-95, incorporated by reference in s. NR 440.17 (2) (a) 30. and 61., if published values are not available or cannot be calculated
Bws is the water vapor content of the vent stream, proportion by volume
NR 440.705(5)(d)5.5. The emission rate of TOC in the vent stream shall be calculated using the following equation:
where:
ETOC is the emission rate of TOC in the sample, kg/hr
K2 is a constant, 2.494 × 10-6 (l/ppm) (g-mole/scm) (kg/g) (min/hr), where standard temperature for (g-mole/scm) is 20°C
Cj is the concentration on a dry basis of compound “j” in ppm as measured by Method 18 as indicated in subd. 2.
Mj is the molecular weight of sample “j“, g/g-mole
Qs is the vent stream flow rate (dscm/min) at a temperature of 20°C
NR 440.705(5)(d)6.6. The total vent stream concentration, by volume, of compounds containing halogens (ppmv, by compound) shall be summed from the individual concentrations of compounds containing halogens which were measured by Method 18.
NR 440.705(5)(e)(e) For purposes of complying with subs. (1) (c) 2. and (3) (c), the owner or operator of a facility affected by this section shall calculate the TRE index value of the vent stream using the equation for incineration in subd. 1. for halogenated vent streams. The owner or operator of an affected facility with a nonhalogenated vent stream shall determine the TRE index value by calculating values using both the incinerator equation in subd. 1. and the flare equation in subd. 2. and selecting the lower of the 2 values.
NR 440.705(5)(e)1.1. The equation for calculating the TRE index value of a vent stream controlled by an incinerator is as follows:
NR 440.705(5)(e)1.a.a. Where for a vent stream flow rate (scm/min) at a standard temperature of 20°C that is greater than or equal to 14.2 scm/min:
TRE is the TRE index value
Qs is the vent stream flow rate (scm/min) at a standard temperature of 20°C
HT is the vent stream net heating value (MJ/scm), where the net enthalpy per mole of vent stream is based on combustion at 25°C and 760 mm Hg but the standard temperature for determining the volume corresponding to one mole is 20°C as in the definition of Qs
Ys is Qs for all vent stream categories listed in Table 1 except for Category E vent streams where Ys = (Qs ) (HT)/3.6
ETOC is the hourly emissions of TOC reported in kg/hr
a, b, c, d, e and f are coefficients. The set of coefficients that apply to a vent stream can be obtained from Table 1.
NR 440.705(5)(e)1.b.b. For a vent stream flow rate (scm/min) at a standard temperature of 20°C that is less than 14.2 scm/min:
TRE is the TRE index value
Qs is 14.2 scm/min
HT = (FLOW) (HVAL)/14.2
where the following inputs are used:
FLOW is the vent stream flow rate (scm/min) at a standard temperature of 20°C
HVAL is the vent stream net heating value (MJ/scm) where the net enthalpy per mole of vent stream is based on combustion at 25°C and 760 mm Hg but the standard temperature for determining the volume corresponding to one mole is 20°C as in the definition of Qs
Ys is 14.2 scm/min for all vent streams except for Category E vent streams where Ys = (14.2) (HT)/3.6
ETOC is the hourly emissions of TOC reported in kg/hr
a, b, c, d, e and f are coefficients. The set of coefficients that apply to a vent stream can be obtained from Table 1.
NR 440.705(5)(e)2.2. The equation for calculating the TRE index value of a vent stream controlled by a flare is as follows:
where:
TRE is the TRE index value
ETOC is the hourly emission rate of TOC reported in kg/hr
Qs is the vent stream flow rate (scm/min) at a standard temperature of 20°C
HT is the vent stream net heating value (MJ/scm) where the net enthalpy per mole of offgas is based on combustion at 25°C and 760 mm Hg but the standard temperature for determining the volume corresponding to one mole is 20°C as in the definition of Qs
a, b, c, d and e are coefficients. The set of coefficients that apply to a vent stream can be obtained from Table 2.
NR 440.705(5)(f)(f) Each owner or operator of an affected facility seeking to comply with sub. (1) (c) 2. or (3) (c) shall recalculate the TRE index value for that affected facility whenever process changes are made. Examples of process changes include changes in production capacity, feedstock type or catalyst type or whenever there is replacement, removal or addition of recovery equipment. The TRE index value shall be recalculated based on test data or on best engineering estimates of the effects of the change on the recovery system.
NR 440.705(5)(f)1.1. Where the recalculated TRE index value is less than or equal to 1.0, the owner or operator shall notify the department within one week of the recalculation and shall conduct a performance test according to the methods and procedures required by this subsection in order to determine compliance with sub. (3) (a) or (b). Performance tests shall be conducted as soon as possible after the process change but no later than 180 days from the time of the process change.
NR 440.705(5)(f)2.2. Where the recalculated TRE index value is less than or equal to 8.0 but greater than 1.0, the owner or operator shall conduct a performance test in accordance with s. NR 440.08 and this subsection and shall comply with subs. (4) and (6) and this subsection. Performance tests shall be conducted as soon as possible after the process change but no later than 180 days from the time of the process change.
NR 440.705(5)(g)(g) Any owner or operator subject to the provisions of this section seeking to demonstrate compliance with sub. (1) (c) 4. shall use Method 2, 2A, 2C or 2D of Appendix A to 40 CFR part 60, incorporated by reference in s. NR 440.17, for determination of volumetric flow rate.
NR 440.705(5)(h)(h) Each owner or operator seeking to demonstrate that a reactor process vent stream has a TOC concentration for compliance with the low concentration exemption in sub. (1) (c) 8. shall conduct an initial test to measure TOC concentration.
NR 440.705(5)(h)1.1. The sampling site shall be selected as specified in par. (d) 1. a.
NR 440.705(5)(h)2.2. Method 18 or Method 25A of Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, shall be used to measure concentration.
NR 440.705(5)(h)3.3. Where Method 18 is used to qualify for the low concentration exclusion in sub. (1) (c) 8., the procedures in par. (b) 4. a. and d. shall be used to measure TOC concentration and the procedures of par. (b) 3. shall be used to correct the TOC concentration to 3% oxygen. To qualify for the exclusion, the results shall demonstrate that the concentration of TOC corrected to 3% oxygen is below 300 ppm by volume.
NR 440.705(5)(h)4.4. Where Method 25A is used, the following procedures shall be used to calculate ppm by volume TOC concentration corrected to 3% oxygen:
NR 440.705(5)(h)4.a.a. Method 25A shall be used only if a single organic compound is greater than 50% of total TOC, by volume, in the reactor process vent stream. This compound shall be the principal organic compound.
NR 440.705(5)(h)4.b.b. The principal organic compound may be determined by either process knowledge or test data collected using an appropriate reference method. Examples of information that could constitute process knowledge include calculations based on material balances, process stoichiometry or previous test results provided the results are still relevant to the current reactor process vent stream conditions.
NR 440.705(5)(h)4.c.c. The principal organic compound shall be used as the calibration gas for Method 25A.
NR 440.705(5)(h)4.d.d. The span value for Method 25A shall be 300 ppmv.
NR 440.705(5)(h)4.e.e. Use of Method 25A is acceptable if the response from the high level calibration gas is at least 20 times the standard deviation of the response from the zero calibration gas when the instrument is zeroed on the most sensitive scale.
NR 440.705(5)(h)4.f.f. The owner or operator shall demonstrate that the concentration of TOC, including methane and ethane, measured by Method 25A, corrected to 3% oxygen, is below 150 ppm by volume to qualify for the low concentration exclusion in sub. (1) (c) 8.
NR 440.705(5)(h)4.g.g. The concentration of TOC shall be corrected to 3% oxygen using the procedures and equation in par. (b) 3.
NR 440.705(6)(6)Reporting and recordkeeping requirements.
NR 440.705(6)(a)(a) Each owner or operator subject to sub. (3) shall notify the department of the specific provisions of sub. (3) (a), (b) or (c) with which the owner or operator has elected to comply. Notification shall be submitted with the notification of initial startup required by s. NR 440.07 (1) (c). If an owner or operator elects at a later date to use an alternative provision of sub. (3) with which he or she will comply, then the department shall be notified by the owner or operator 90 days before implementing a change and, upon implementing the change, a performance test shall be performed as specified by sub. (5) no later than 180 days from initial startup.
NR 440.705(6)(b)(b) Each owner or operator subject to the provisions of this section shall keep an up to date, readily accessible record of the following data measured during each performance test, and also include the following data in the report of the initial performance test required under s. NR 440.08. Where a boiler or process heater with a design heat input capacity of 44 MW (150 million Btu/hour) or greater is used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or process heater to comply with sub. (3) (a), a report containing performance test data need not be submitted, but a report containing the information in par. (b) 2. a. is required. The same data specified in this subsection shall be submitted in the reports of all subsequently required performance tests where either the emission control efficiency of a combustion device, outlet concentration of TOC or the TRE index value of a vent stream from a recovery system is determined.
NR 440.705(6)(b)1.1. Where an owner or operator subject to the provisions of this section seeks to demonstrate compliance with sub. (3) (a) through use of either a thermal or catalytic incinerator:
NR 440.705(6)(b)1.a.a. The average firebox temperature of the incinerator, or the average temperature upstream and downstream of the catalyst bed for a catalytic incinerator, measured at least every 15 minutes and averaged over the same time period of the performance testing, and
NR 440.705(6)(b)1.b.b. The percent reduction of TOC determined as specified in sub. (5) (b) achieved by the incinerator or the concentration of TOC (ppmv, by compound) determined as specified in sub. (5) (b) at the outlet of the control device on a dry basis corrected to 3% oxygen.
NR 440.705(6)(b)2.2. Where an owner or operator subject to the provisions of this section seeks to demonstrate compliance with sub. (3) (a) through use of a boiler or process heater:
NR 440.705(6)(b)2.a.a. A description of the location at which the vent stream is introduced into the boiler or process heater, and
NR 440.705(6)(b)2.b.b. The average combustion temperature of the boiler or process heater with a design heat input capacity of less than 44 MW (150 million Btu/hr) measured at least every 15 minutes and averaged over the same time period of the performance testing.
NR 440.705(6)(b)3.3. Where an owner or operator subject to the provisions of this section seeks to demonstrate compliance with sub. (3) (b) through use of a smokeless flare, flare design, for example, steam-assisted, air-assisted or nonassisted, all visible emission readings, heat content determinations, flow rate measurements and exit velocity determinations made during the performance test, continuous records of the flare pilot flame monitoring, and records of all periods of operations during which the pilot flame is absent.
NR 440.705(6)(b)4.4. Where an owner or operator subject to the provisions of this section seeks to demonstrate compliance with sub. (3) (c):
NR 440.705(6)(b)4.a.a. Where an absorber is the final recovery device in the recovery system, the exit specific gravity, or alternative parameter which is a measure of the degree of absorbing liquid saturation, if approved by the department, and average exit temperature of the absorbing liquid measured at least every 15 minutes and averaged over the same time period of the performance testing, with both measured while the vent stream is normally routed and constituted; or
NR 440.705(6)(b)4.b.b. Where a condenser is the final recovery device in the recovery system, the average product side exit temperature measured at least every 15 minutes and averaged over the same time period of the performance testing while the vent stream is routed and constituted normally; or
NR 440.705(6)(b)4.c.c. Where a carbon adsorber is the final recovery device in the recovery system, the total steam mass flow measured at least every 15 minutes and averaged over the same time period of the performance test or full carbon bed cycle, temperature of the carbon bed after regeneration and within 15 minutes of completion of any cooling cycle and duration of the carbon bed steaming cycle with all measured while the vent stream is routed and constituted normally; or
NR 440.705(6)(b)4.d.d. As an alternative to subd. 4. a., b. or c., the concentration level or reading indicated by the organics monitoring device at the outlet of the absorber, condenser or carbon adsorber measured at least every 15 minutes and averaged over the same time period of the performance testing while the vent stream is normally routed and constituted.
Loading...
Loading...
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.